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Abstract. Paraelectric impurities contribute significantly to the low-temperature properties of
alkali halide crystals. Even at very low density the dipolar interaction of adjacent defect ions
may lead to deviations from the behaviour expected for isolated impurities; in a certain range of
concentration it is sufficient to consider pairs of coupled defects. Applying a projection operator
method, previous work on this pair model is extended to the case of finite asymmetry and weak
coupling to acoustic phonons. After performing the ensemble averaging, the specific heat and
the zero-frequency susceptibility are calculated and compared with experimental data on KCl:Li
and KCl:CN. The isotope effect on the Rabi frequency and relaxation rate is discussed.

1. Introduction

Quantum tunnelling of substitutional defect ions in alkali halide crystals leads to particular
low-temperature properties [1, 2]. As a standard example one may think of potassium
chloride doped with a small amount of lithium (KCl:Li). Because of its smaller radius,
the lithium ion experiences a potential energy landscape quite different from that of the
potassium. As a consequence it does not stay on the lattice site but prefers one of eight
equivalent off-centre positions on the corners of a cube of side lengthd = 1.4 Å and with
the original potassium site at its centre [3]. Tunnelling between these states gives rise to a
characteristic ground-state splitting.

There are three different matrix elements for tunnelling along the edges of the cube,
along a face diagonal, and along a space diagonal. The first one dominates the tunnelling
spectrum, since in this case the distance between equilibrium states is smallest and the
potential barrier is lowest [3]. This fact leads to a significant simplification: when neglecting
face and space diagonal tunnelling, the partition function of the eight-level system is given
by the third power of the partition function of a two-level system, and the linear response
to a time-dependent electric field is identical to that of a two-level system. Hence one is
led to mimic the tunnelling defect by a spin-1

2 system, which is of course much simpler to
deal with than the original eight-dimensional problem [4, 5].

Nearby defect ions interact strongly, through both electric dipole and elastic strain fields
[6, 7, 8]. Even at concentrations as low as 60 ppm, most physical properties show significant
interaction effects; as examples we note the broadening of the Schottky peak in the specific
heat [9] and low-energy excitations well below the tunnelling splitting [10]. For the case
of zero bias, Kranjc considered coupling to acoustic phonons in a small-polaron approach,
and derived both a finite-phase coherence time and a reduced tunnel energy [12].
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Both the elastic and the electric interaction of adjacent impurities vary with the inverse
cube of the distance of two defects; thus the average coupling increases with rising
concentration. Two regimes are to be distinguished [13, 14].

(i) In the dilute case the average interaction energy is smaller than the tunnelling energy.
Then most defects can be considered as isolated; only a few are sufficiently close to form
strongly coupled pairs. Since the coupling energy may exceed the tunnelling energy by
several orders of magnitude, it cannot be treated by perturbation theory with respect to the
latter.

(ii) With rising concentration clusters of three and more defects occur with increasing
probability. At some point the average interaction energy exceeds the tunnel splitting;
accordingly the coupling to more than one neighbour becomes important, and the pair
model breaks down [13].

In this paper we investigate pairs of interacting two-level tunnelling defects,
corresponding to the dilute case (i). Previously we have derived the exact solution for
the case where each defect moves in a symmetric potential [15]; in the present work we
include both a finite asymmetry energy and coupling to phonons. The generalization to
asymmetric potentials is essential for the description of recent experiments on tunnelling of
coupled pairs of lithium ions in KCl [10]. The finite bias gives rise to a relaxation feature
in the dynamical response function; thus damping arising from phonon coupling has to be
taken into account.

The paper is organized as follows. In section 2 the model is specified. In section 3
some basic formulas of a projection formalism for the symmetrized correlation functions
are stated. In section 4 the dynamics of a symmetric defect pair is derived within this
framework and in section 5 damping rates due to phonon coupling are evaluated. Section 6
gives some information about the ensemble average. Section 7 considers the influence of a
small asymmetry for strongly coupled pairs and in section 8 we discuss our results in view
of various static and dynamical experiments for lithium and cyanide impurities.

2. The model

The Hamiltonian of the model considered in this paper consists of three parts,

H = HS + HB + HSB. (1)

The first one accounts for the ‘system’ consisting of a pair of two-state impurities:

HS = 10

2
σx + 1

2
σz + 1′

0

2
τx + 1′

2
τz − 1

2
Jσzτz (2)

with Pauli matricesσα andτα. Thez-components correspond to the real-space coordinates.
The two localized states of the first impurity are labelled byσz = ±1; they are separated in
energy by the bias1. The off-diagonal part involves the quantum motion with the overlap
tunnel matrix element10. The second impurity is described by the matricesτα and the
energies1′ and 1′

0. The last term in equation (2) accounts for the dipolar interaction of
the defects.

The remaining parts of the Hamiltonian involve the heat bath which consists of Debye
phonons:

HB =
∑

k

h̄ωkb
†
kbk (3)
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and which are linearly coupled to the impurity coordinates:

HSB = 1

2
(σz + τz)e (4)

with the elastic distortion

e =
∑

k

h̄λk(b
†
k + bk). (5)

The coupling constantsλk depend linearly on the square root of the wave vectork; for
acoustic phonons one finds withωk = ck the well known expression

λk = γ

h̄

√
h̄ωk

2mc2
. (6)

The coupled density of states of Debye phonons yields a spectral function

J (ω) =
∑

k

λ2
kδ(ω − ωk) = γ 2

h̄mc2ω3
D

ω3 2(ωD − ω) (7)

with a characteristic cubic frequency dependence; we have introduced the oscillator
frequenciesωk, Debye frequencyωD, elastic coupling energyγ , and sound velocityc.
The phonon coupling of substitutional defects, like Li in K:Cl, is in general well described
by the cubic spectral density (7). (For a discussion of the selection rules for the eight-state
system see reference [17]. A different situation may be encountered for interstitial defects,
where the above coupling term may be absent due to the local site symmetry, thus requiring
a more careful investigation [18].)

According to the two-state approximation for each impurity, the system operatorHS is
formulated in terms of Pauli matricesσα, τα. Since all lattice sites are identical, different
tunnelling amplitudes can arise only from different impurities. For the two stable lithium
isotopes in KCl one finds10 ≈ 1.1 K for 7Li and 10 ≈ 1.65 K for 6Li. The resulting
isotope effect has been studied in detail in reference [30]. In this paper we will confine
ourselves to pairs of the same mass; hence we put10 = 1′

0. The case of different defects
leads to more complicated formulas without changing the essential physics [16].

The dipolar interaction varies with the inverse cube of the defect distance:

1

2
J = ± 1

4πε0εr

q2d2

r3
(8)

wherep = 1
2qd denotes the absolute value of the dipole moment connected to the pseudo-

spins, p = 1
2qdσz. The two signs mimic the dependence of the dipolar energy on the

relative orientation of the dipole moments. The interaction term− 1
2Jσzτz leads to either a

parallel orientation (J > 0) or an antiparallel orientation (J < 0) of the dipole moments.
This sign effect will play a significant role whenever the pair interacts with acoustic or
microwaves with a wavelength much larger than the distance of the two defects; parallel
orientation leads to constructive, antiparallel to a destructive interference [15].

Assuming a random distribution of the defects on the host lattice, Klein obtained for
the distribution function of the coupling energy [5]

P(J ) = constant× J−2 for J1 6 |J | 6 J2 (9)

with most systems being close to the lower bound. In the following we refer to|J | � 10

and 10 � |J | as the cases of weak and strong coupling, respectively. We postpone a
detailed discussion of the distribution to section 7. Here let us only state that the upper
boundJ2 is of the order of 100 K; with the impurity concentrationc one has for the lower
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boundJ1 = cJ2. Thus for defect concentrations below 100 ppm, most pairs are weakly
coupled, and only a small fraction of them show strong coupling. Clearly in our approach
we do not account for strongly coupled triples and larger clusters. Yet such configurations
are very rare at sufficiently low density. The pair model breaks down as soon as the average
interaction energyJ1 is comparable to the tunnel energy10 [17].

Whereas the coupling energyJ accounts for the nearest-neighbour impurity, the
interaction with additional defects and with lattice imperfections is subsumed in the
asymmetry energy1. Specific heat and susceptibility data for KCl:Li show the average
bias to be much smaller than the tunnel energy,1 � 10. Hence the bias is irrelevant for
weakly coupled defects whose level splittings are of the order of10. Yet pairs of nearby
impurities exhibit low-energy excitations of the order of12

0/J which may be significantly
affected by a small but finite bias. In such a case, however, the source of the bias is far
away as compared to the impurity distance; as a consequence, the corresponding dielectric
or elastic strain fields are the same at the two impurity sites, resulting in equal asymmetry
energies. (For the case of two eight-state impurities, this has been discussed in detail in
references [30, 17].) Accordingly we put1 = 1′ throughout this paper.

3. Projection formalism

The essential idea of the projection formalism (proposed by Mori [25] and Zwanzig [26]) is
to consider the linear space spanned by the operatorsσα, τα, bk, b

†
k and their products, with

the scalar product(A|B). Several different definitions for the inner product are possible; in
this article we use

(A|B) = 1

2
〈A†B + BA†〉 (10)

where the angular brackets indicate the canonical average〈· · ·〉 = tr{· · ·W } with W =
e−βH /tr{e−βH }. In the following we consider symmetrized two-time correlation functions

Cµν(t) = (Aµ(t)|Aν). (11)

Time evolution of any operatorAµ is governed by the Heisenberg equation

h̄∂tAµ = i[H, Aµ] = i h̄LAµ (12)

which defines the LiouvillianL acting on the linear space of quantum mechanical operators.
The formal integral of (12), exp(iLt), in general involves the whole space{Aν} whereν

labels a complete set.
Following Mori and Zwanzig, we split this space into the subspace of system operators

and its complement, the latter including both pure bath and composite system–bath operators.
In order to make this idea more precise we introduce a projection operatorP on the subspace
spanned by the set of system operators{pµ}:

P =
∑
µ,ν

|pµ)ηµν(pν | Q = 1 − P. (13)

The operatorQ projects on the complement. The metric tensorη is defined as the inverse
correlation matrix at time zero

Mµν = (pµ|pν) = (η−1)µν. (14)

(In the following we will use the term ‘metric tensor’ for bothη and M.) At this point
the choice of the symmetric scalar product (10) becomes clear; for Pauli matrices we have
〈σµσν + σνσµ〉 = 2δµν .
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Making use of the projectors (13) one can split up the Heisenberg equations into two
parts:

P Ȧµ = i PLP Aµ + i PLQ Aµ (15)

QȦµ = i QLP Aµ + i QLQ Aµ. (16)

After integrating the second of these equations and making use of (11) one ends up with
an effective equation of motion for symmetrized correlation functions:

∂t Cµν(t) = −i �µκCκν(t) −
∫ t

0
dt ′ Kµκ(t − t ′)Cκν(t

′). (17)

Using the Laplace transformation

Cµν(z) = i
∫ ∞

0
dt Cµν(t) eizt Im(z) > 0 (18)

the correlation functions are given by the matrix equation

C(z) = −1

z − � + K(z)
M. (19)

Here the frequency matrix is determined by the energy differences of the system

�µκ = (sµ|PLP sλ) ηλκ (20)

and the memory functions

Kµκ(z) = (sµ|PLQ
1

QLQ − z
QLP |sν) ηνκ (21)

reflect the influence of the bath. The above resolvent formula may be modified by an
arbitrary unitary transformationU to

C(z) = U
−1

z − U †�U + U †K(z)U
U †MU U †. (22)

The interesting point about this formula is that the two essential items of information may
be separated: the resonance frequencies and damping rates are given by the zeros of the
denominator and the corresponding residues by the numerator.

Since the matrices� andM commute, there is a particular unitary transformation which
diagonalizes both; for the case of zero asymmetry it is given explicitly in appendix A. This
solution provides a useful starting point for an approximative treatment of the full problem
with finite bias and phonon coupling; it will permit us to write both resonances and residues
of equation (22) as power series in terms of a well defined small parameter.

The Liouville space of the pair model introduced in section 2 is spanned by all possible
products of the two spins and the identity:

(1) p1 = σy p2 = σz p3 = σxτy p4 = σxτz

(2) p5 = τy p6 = τz p7 = σyτx p8 = σzτx

(3) p9 = σyτz p10 = σzτy p11 = σx p12 = τx

(4) p13 = σzτz p14 = σyτy p15 = σxτx p16 = 1.

(23)

All operators acting on elements of the Liouville space are represented by 16× 16 matrices
with respect to this basis. For later convenience we have split that set into the four groups.
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4. The symmetric defect pair

In this section we consider the symmetric problem without phonon coupling, i.e. we put
1 = 0 = 1′ andHSB = 0 and thus have

H = 10

2
σx + 10

2
τx − 1

2
Jσzτz. (24)

Products of localized states for each spin provide a physical basis of quantum states. Putting
e.g. |lr〉 for the state with theσ -spin in its left-hand well and theτ -spin in its right-hand
well, there are four localized states|ll〉, |rr〉, |lr〉, and|rl〉.

The spectrum of (24) comprises the four levels± 1
2J and±( 1

4J 2 + 12
0)

1/2. Using the
abbreviations

η± = ±J/2 +
√

J 2/4 + 12
0 w± =

√
η±

η+ + η−
(25)

we find for the energies and the corresponding eigenstates

E3 = 1

2
(η+ + η−): |3〉 = 2−1/2

[
w+ {|lr〉 + |rl〉} + w− {|ll〉 + |rr〉}]

E2 = 1

2
(η+ − η−): |2〉 = 2−1/2 {|lr〉 − |rl〉}

E1 = −1

2
(η+ − η−): |1〉 = 2−1/2 {|ll〉 − |rr〉}

E0 = −1

2
(η+ + η−): |0〉 = 2−1/2

[
w− {|lr〉 + |rl〉} − w+ {|ll〉 + |rr〉}] .

(26)

The energy differencesη± are most relevant for spectroscopy; for largeJ they are well
approximated by the first term of the power series

η+ = J [1 + O(12
0/J

2)] η− = 12
0

J
[1 + O(12

0/J
2)]. (27)

The rootw+ tends to one whereasw− vanishes in the strong-coupling limit10/J → 0.
(Here and in the following we assumeJ positive if not stated otherwise.)

Figure 1. The energy spectrum of a pair of two-level systems The arrows indicate the allowed
dipole transitions forJ > 10.
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The two low-lying eigenstates obviously correspond to essentially parallel configurations
|ll〉 ± |rr〉; the antiparallel admixture with amplitudew− becomes negligible for strong
interactions. In the same sense the two upper levels correspond to antiparallel configurations
|lr〉 ± |rl〉. It is worth noting that a negative interaction would lead to an inverse situation,
i.e. low-lying antiparallel and higher parallel states (antiferromagnetic coupling). It is also
worth noting that the four levels somehow appear in two level pairs as visualized in figure 1:
it costs little energy just to change the symmetry of the wave function but much energy to
change from parallel to antiparallel constellations.

The fact that one can write down explicitly the eigenstates of the energy operator makes
it clear that there is an exact solution to the problem [15]. In this paper we choose the
projection formalism in order to develop this solution because this gives a basis for the
calculation of the memory function.

Discarding the phonon coupling, the correlation matrix is determined by frequency and
metric matrices. The former reads

� =


�̂11 0 0 0

0 �̂22 0 0
0 0 �̂33 �̂34

0 0 �̂
†
34 �̂44

 (28)

whose entrieŝ�ij are 4×4 matrices with labels referring to the four groups in equation (23).
Calculating the metric tensorM according to (14) requires the statistical operator which

has been derived previously [15]; in the present notation it reads

W = 1

4

[
1 + t+ t−σxτx − w−w+(t+ + t−)(σx + τx)

+ (w2
−t+ − w2

+t−)σyτy + (w2
+t+ − w2

−t−)σzτz

]
(29)

with the temperature factors

t± = tanh

(
βη±

2

)
. (30)

The expectation value of any operator is given by〈pj 〉 = tr(Wpj ). With (14) and (23) we
find

M =


M̂11 M̂12 0 0
M̂

†
12 M̂22 0 0

0 0 M̂33 M̂34

0 0 M̂
†
34 M̂44

 (31)

with 4×4 matrices M̂ij that are easily calculated. Both the metric tensor and the
frequency matrix split into two 8×8 blocks which simplifies the problem substantially.
This simplification is removed by a finite asymmetry energy.

For the choice of the scalar product (10) the frequency matrix always commutes with the
metric tensor; hence there is a unitary transformationU acting on the Liouville space that
diagonalizes both. Indeed this transformation can be calculated explicitly for the symmetric
pair and is given in appendix A.

The eigenvalues of� andM, i.e. the frequencies and their corresponding metric factors
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are given by the following list:

±η− 1 + t+
±η− 1 − t+
±η+ 1 + t−
±η+ 1 − t−
±(η+ + η−) 1 + t+t−
±(η+ − η−) 1 − t+t−
0 (1 + t+)(1 + t−)

0 (1 − t+)(1 − t−)

0 (1 + t+)(1 − t−)

0 (1 − t+)(1 + t−).

(32)

(Note that the metric discriminates between degenerate frequencies.)
Having found the appropriate unitary transformation, any entry of the 16×16-

dimensional correlation matrix can be calculated by use of formula (22). (Formally this
corresponds to an expansion of the elements of (23) in terms of the eigenvectors of� and
M.) As examples we quote theσz–σz-correlation

C2,2(z) = −w2
−

z

z2 − η2+/h̄2 − w2
+

z

z2 − η2−/h̄2 (33)

and theσz–τz-correlation

C2,6(z) = t−w2
−

z

z2 − η2+/h̄2 − t+w2
+

z

z2 − η2−/h̄2 (34)

and also theσx–σx-correlation

C11,11(z) = −2w2
− w2

+(1 + t+t−)
1

z
− 1

2
(w2

− − w2
+)2(1 + t+t−)

z

z2 − (η− + η+)2/h̄2

− 1

2
(1 − t+t−)

z

z2 − (η− − η+)2/h̄2 . (35)

With P = 1
2qd(σz + τz) the spectrum of the dielectric response function

α(t − t ′) = (i/ε0)〈[P (t), P (t ′)]〉2(t − t ′) (36)

is connected via the fluctuation-dissipation theorem

α′′(ω) = (2/ε0)(qd/2)2 tanh(βh̄ω/2)(C ′′
22(ω) + C ′′

66(ω) + C ′′
26(ω) + C ′′

62(ω)) (37)

to the correlation spectraC ′′
ij (ω) = Im Cij (ω + iη). With equations (33) and (34) one is led

to the response function

α(t) = (2ε0)(qd/2)2
∑
±

w2
∓[1 + sgn(J )t∓]t± sin(η±t/h̄)2(t). (38)

This result has been discussed previously in reference [15].
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5. Damping rates

Now we turn to the interaction with the phonon bath. Assuming weak coupling we evaluate
the memory matrix (21) in lowest-order perturbation theory; we retain only its dissipative
part and hence discard the renormalization of the tunnel energy. (For a discussion on this
point see, e.g., references [12, 17].)

In the lowest Born approximation the memory matrix reads in the time representation

Kµκ(t − t ′) = (pµ|PLSBQe−iL0(t−t ′)QLSBP |pν)0 η0
νκ . (39)

This formula states: at timet ′ the system is scattered by the interactionPLSBQ into the
complement spaceQ, then propagates according to the uncoupled time evolution operator,
and is scattered back to the system spaceP at time t .

The damping rates are found by linearizing the eigenvalue equation|z − � + iK ′′(z)|
in terms ofK ′′(z) and by evaluating the memory function at the bare poles.

In order to proceed further we expandQLSBpµ in terms of the elements (23) times the
elastic straine. Both the thermal average(.|.)0 and the metric tensorη0 are calculated with
the uncoupled HamiltonianH0; thus equation (39) factorizes into a spin part and a bath
part. Putting

εµµ′ = 1

4
tr{[σz + τz, pµ]pµ′ } (40)

permits us to rewrite the matrix elementsKµν as

Kµκ(t − t ′) = 1

2

∑
µ′,ν ′

εµµ′ενν ′(〈pµ′(t)pν ′(t ′)〉0〈e(t)e(t ′)〉0

+ 〈pν ′(t ′)pµ′(t)〉0〈e(t ′)e(t)〉0)ην ′κ . (41)

Inserting the relation for the spectra of ordinary and symmetrized correlation functions

1

2

∫ ∞

−∞
dt eiωt 〈A(±t)A〉 = 2

1 + e∓βh̄ω
C ′′

A(ω) (42)

(with CA(t) = (A(t)|A)) and the bath spectral function

B ′′(ω) = 1

2

∫
dt eiωt (e(t)|e) = π

2
J (ω) coth(βh̄ω/2) (43)

in the Fourier transform of equation (41), we find the memory function

K ′′
µκ(ω) =

∑
µ′,ν ′

εµµ′ενν ′6µ′ν ′(ω)ην ′κ (44)

to be determined by the weighted convolution integral

6′′
µν(ω) = 2

π

∫
d� f (ω, �)C0′′

µν(ω − �) B ′′(�) (45)

with the thermal factor

f (ω, �) = cosh(βh̄ω/2)

2 cosh(βh̄�/2) cosh(βh̄(ω − �)/2)
(46)

arising from relation (42).
Like the frequency and metric matrices, the memory matrix splits in two 8× 8 blocks.

Since the damping rates are expected to be much smaller than the energiesη±, we linearize
the zeros of the determinant|z − � + iK ′′(z)| in terms ofK; this amounts to keeping only
the diagonal elements of the transformed matrix

UIKIU
†
I UIηIU

†
I . (47)



7312 O Terzidis and A W¨urger

Thus the poles in equation (32) acquire an imaginary part; the degeneracy of the frequencies
η±/h̄ is lifted. The relevant correlation functions (33) and (34) involve the first four entries
in equation (32); hence we restrict the explicit evaluation to corresponding damping rates.
The rate of the first pole is given by

γ1 =
∫

d� f (ω, �)J (ω − �) coth

(
βh̄(ω − �)

2

)
1

1 + t+

×
[

1

2
w2

−(C0′′
9,10(�) + 2iC0′′

9,11(�) + C0′′
11,12(�)

+ iC0′′
9,12(�) + iC0′′

10,11(�) + C0′′
11,11(�) + C0′′

9,9(�))

+ 3

2
w−w+(C0′′

11,14(�) − C0′′
11,15(�) + iC0′′

9,14(�) − iC0′′
9,15(�))

+ 1

2
w−w+(C0′′

12,14(�) − C0′′
12,15(�) + iC0′′

10,14(�) − iC0′′
10,15(�))

+ w2
−(C0′′

14,14(�) + C0′′
15,15(ω − �) − 2C0′′

14,15(�))

]
h̄ω=η−

.

(48)

After inserting the bare correlation functions, this rather complicated formula reduces to

γ1 =
∫

d� f (ω, �)J (�) coth

(
βh̄�

2

)
×

[
πw2

−
1 + t+t−
1 + t+

δ(ω − � − η+/h̄ − η−/h̄) + 2πw2
+δ(ω − �)

]
h̄ω=η−

(49)

and finally yields the imaginary part of the firstη−-pole in (32):

γ1 = π

2
w2

−J (η+/h̄)

{
coth

(
βη+

2

)
− 1

}
+ πw2

+J (η−/h̄) coth

(
βη−

2

)
. (50)

Similar expressions appear for the other rates; we refrain from repeating the above
argument, but simply note the resulting rates. Hence we find for the second pole in (32)

γ2 = π

2
w2

−J (η+)

{
coth

(
βη+

2

)
+ 1

}
. (51)

The rates for the large frequencyη+/h̄, i.e. for the third and fourth pole pairs, are given by

γ3 = π

2
w+J (η−/h̄)

{
coth

(
βη−

2

)
+ 1

}
+ πw−J (η+/h̄) coth

(
βη+

2

)
(52)

and

γ4 = π

2
w+J (η−/h̄)

{
coth

(
βη−

2

)
− 1

}
. (53)

From the factor [1+ sgn(J )]t± in (38) one finds that the response function involves
either the first and the third, or the second and the fourth poles of (32), depending on the
sign of J . For the most physical caseJ > 0, the first case is realized; accordinglyγ1 and
γ3 are the relevant damping rates for the two signs in (38).

As is easily inferred from the metric factors(1± t+), the first two poles in (32) corres-
pond to tunnelling within the ground-state doublet and within the upper doublet, respectively.
At low temperaturekBT � η+ we find 1+ t+ ≈ 2 and 1− t+ ≈ e−βη+ � 1; then the upper
level is almost completely depopulated. The most relevant rateγ1 then reads

γ1 = πJ (η−/h̄) coth

(
βη−

2

)
. (54)
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Taking into account the selection rules shown in figure 1, the ratesγ1, . . . , γ4 could
actually be derived quite simply by means of Fermi’s golden rule; yet this approach
fails when considering the most interesting case of a finite asymmetry energy. Moreover,
the projection method yields both amplitudes and temperature factors in an unambiguous
fashion.

6. Small asymmetry and strong coupling

In this section we want to discuss the effect of a finite asymmetry energy. For simplicity
and since this seems to be the most relevant case [30, 17], we assume both defects to be
subject to the same bias:

H = 10

2
(σx + τx) + 1

2
(σz + τz) − J

2
σzτz. (55)

The asymmetry1 is generally assumed to be much smaller than the tunnel energy. For
uncoupled defects it is hence justified to consider the bias as a small perturbation. Yet the
situation becomes different as soon as the interaction plays a significant role. Then the
condition

1 � 10 � J (56)

can be translated as

η−, 1 � η+. (57)

This means that the usual perturbation approach is of no use: the unperturbed system has
then two energy scales; one of them is of the same order as the additional energy appearing.
In order to get a more concrete impression of the situation one should bear in mind that
for KCl:Li the tunnelling frequency10 is roughly 1 K, the asymmetry1 somewhere in the
range of 50 mK and the maximal coupling constant is about 100 K.

Thus one has to look for some approximation based on the relation (57). Consider the
Hamiltonian (55) in the energy basis (26) of the symmetric pair:

H̃ =


E3 0 w−1 0
0 E2 0 0

w−1 0 E1 w+1

0 0 w+1 E0

 (58)

which obviously is diagonal for zero bias,1 = 0. The spectrum (26) and relation (57) show
that there are two pairs of nearby levels which are separated by the large energyη+ ≈ J .

According to (57) the lower 2×2 block involves off-diagonal entriesw+1 which are
comparable to the diagonal ones. From equation (25) we getw+ ≈ 1 andw− ≈ 12

0/J
2 � 1.

Hence the remaining off-diagonal termsw−1 are smaller by a factor of12
0/J

2, and mix
states from far apart levels; the level shift resulting fromw−1 is of the order of1212

0/J
3

and thus truly negligible.
Accordingly truncating the HamiltoniañH to its lower doublet, defining new two-state

operatorsψx = |1〉〈1| − |0〉〈0| andψz = |1〉〈0| + |0〉〈1|, and discarding the constant energy
E0, we have the effective two-level system

h = 1

2

12
0

J
ψx + 1ψz. (59)

In the case of different defect parameters, as introduced in (2),12
0/2J has to be replaced

by 101
′
0/2J and1 by (1 + 1′)/2.
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From the Hamiltonian (1) defined in section 2 one finds that taking phonon coupling
into account amounts to replacing the asymmetry energy1 with 1+ e; thus we may apply
the well known results for a dissipative two-state system with finite asymmetry energy [28].

When neglecting small corrections in terms of1′
0/J , we find ψz = |ll〉〈ll| − |rr〉〈rr|.

Hence the statesψz = ±1 correspond to both impurities localized either in the right-hand
or left-hand wells,|ll〉 or |rr〉; the tunnelling motion driven by the term proportional toψx

involves both impurities.
Accordingly the correlation spectrum of the spin fluctuations

Ĝ(t − t ′) = 1

2
〈ψz(t)ψz(t

′) + ψz(t
′)ψz(t)〉 − 〈ψz〉2 (60)

of such a system is given by

Ĝ(z) = −η2
−

E2

z + iγt

(z + iγt )2 − E2
− 412

E2/h̄2 sech2(βE/2)
1

z + iγl

(61)

with η− = 12
0/J ,

E =
√

η2− + 412 (62)

and the longitudinal and transverse damping rates

γl = 2γt = πγ 2

h̄4mc2ω3
D

η2
−E coth(βE/2). (63)

With the effective tunnel frequencyη−/h̄ for coherent tunnelling of two defects,
equation (61) is identical to the well known expression for a two-level system in glasses
[28]. As to the transverse rateγt , a similar result has been derived previously by Kranjc
[12]. This work accounts for the reduction of the tunnelling energy through the polaron
or screening effect, which our approach fails to reproduce. (We have neglected this effect
when dropping the real part of the memory function.)

More rigorously, the above result for the damping rate can be reproduced by considering
the full 16×16 memory matrix. For the longitudinal rate we thus find the expression

γl = cosh2
(

βE

2

) ∫
d� f (ω, �)J (�) coth

(
β�

2

)
2η2

−
E2

× [
C0′′

3,3(ω − �) + C0′′
3,7(ω − �)

]
ω=0

. (64)

Inserting the bare correlation functions

C0′′
3,3(ω) = C0′′

3,7(ω) = π

2
{δ(ω − η−/h̄) + δ(ω + η−/h̄)} (65)

confirms the above result.
Finally we note again that for different one-particle tunnel energies10 and 1′

0, the
quantity 12

0/J should be replaced with101
′
0/J ; different asymmetry energies1 and 1′

would require replacing1 with 1
2(1 + 1′).

7. The average over pairs

In this section we discuss the ensemble average arising from a random distribution of the
defects on the host lattice. In order to keep the average tractable we confine ourselves to
the case of zero bias,1 = 0.

From low-frequency microwave spectroscopy it is known that the asymmetry energy is
small for most tunnelling systems1 � 10 [14]; via rotary echoes, coupled pairs with a
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bias of about 50 mK have been detected [10]. Such small values are of little significance
when calculating the specific heat or the average resonant susceptibility, thus justifying our
neglecting the asymmetry energy.

ConsideringN defects onN0 sites, there areN/2 pairs, each of which occupies an
average volumeV1 = 8

3πR3, with R some average distance to the next neighbour.R is
connected to the defect densityn = N/V through

R =
(

3

4π

1

n

)1/3

. (66)

The actual spacing of a defect pair,r, will vary between the lattice constanta and an upper
bound which is roughly equal toR; there is no pair withr > R since all defects are already
involved in a pair at a distance equal to or smaller thanR. Dropping an insignificant factor
(1 − a3/R3)−1 one obtains the distribution

P(J ) = cJ2
1

J 2
for J1 = cJ2 6 |J | 6 J2 (67)

where we have introduced the defect concentrationc = N/N0 and furthermore maximal
and minimal couplings

J1 = 1

2πε0εr

p2

R3
J2 = 1

2πε0εr

p2

a3
. (68)

(We have assumed the distancer to obey a homogeneous distribution instead of the actual
discrete spacings of lattice sites.)

With the valuep = 0.55e Å for the dipole moment of a lithium impurity in KCl
(cf. [19]), one obtains an upper cut-offJ2/kB ∼ 1000 K, which is three orders of magnitude
larger than the tunnel energy. Yet the actual maximum interaction of defects on nearest-
neighbour sites is significantly smaller,JNN ≈ 150 K. Clearly, at such small spacings the
continuous distribution (67) is not valid; this flaw, however, is of little consequence, since
the relevant quantities are rather determined by the lower boundJ1.

Noting the average interaction energynp2/ε0εr , it is clear that fornp2/ε0εr � 10 only
a few strongly coupled pairs exist, whereas most of the systems are interacting weakly.

After expressing the coupling in terms of the energies (25)

J = ± η2
± − 12

0

η±

∣∣∣∣ dJ

dη±

∣∣∣∣ = η2
± + 12

0

η2±
(69)

the distribution (67) leads to the density of states

ρ(η) = 1

2
NJ1

η2 + 12
0

(η2 − 12
0)

2
(70)

whose two branches are bounded according to equations (25) and (67) and which satisfies∫
dη ρ(η) = N .

Noting thatη+η− = 12
0 and changing to the variablex = η/10 permits us to express

the average with respect toη of a quantityA as an integral:

Ā = N
cJ2

210

∫ x2

x1

dx
1 + x2

(1 − x2)2
{A(x) + A(1/x)} (71)

where the two terms in brackets arise from the two branches of the density of statesρ(η).
With the coupling constant

µ = cJ2/10 (72)

the bounds of the integral are given by

x1 = −J2/210 +
√

(J2/210)2 + 1 x2 = −µ/2 +
√

(µ/2)2 + 1. (73)
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8. Discussion

Here we compare the results of the previous sections with various static and dynamic
experiments on defect crystals in the low-density limitµ � 1. According to section 7 the
specific heat and low-frequency susceptibility may be discussed in terms of the zero-bias
model, whereas for the Rabi frequency and the relaxation phenomenon a finite asymmetry
energy has to be taken into account.

8.1. Specific heat

From the energy spectrum given by (25) one can easily calculate the partition function
Z = cosh(βη+/2) cosh(βη−/2) and the inner energy

U = −1

2
η− tanh(βη−/2) − 1

2
η+ tanh(βη+/2) (74)

of a coupled pair. The specific heat is obtained by taking the derivative of the latter with
respect to temperatureT = 1/kBβ and to the average over all pair configurations:

cV = 3
1

V

∑
pairs

dU

dT
. (75)

The factor 3 has been introduced in order to meet the correct expression for the actual
eight-state system in the limit of vanishing coupling. Following section 7 we thus find

cV = 3kBNµ

∫ x2

x1

dx
1 + x2

(1 − x2)2

{(
x10

2kBT

)2

sech2
(

x10

2kBT

)
+

(
10

2xkBT

)2

sech2
(

10

2xkBT

)}
. (76)

Figure 2. The specific heat for 73 ppm6Li in KCl. The data have been observed by Dobbs
[27]. The full line gives the specific heat as obtained from the pair model, equation (76), and
the dashed line that of isolated defects, equation (77).
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In figure 2 we compare equation (76) with data observed for 73 ppm6Li in KCl [27]
and with the specific heat of isolated defects,

cViso = 3kB
N

V

(
10

2kBT

)2

sech2
(

10

2kBT

)
. (77)

Besides the narrowing of the Schottky peak there is a distinct excess specific heat at low
temperature, which is well accounted for by the low-energy pair excitations in equation (76).

Figure 3. The dynamical susceptibility for an impurity pair, as obtained from equation (79).
The dashed line gives the susceptibility of isolated defects.

8.2. Dielectric susceptibility

The dielectric response function is obtained from equations (36)–(38) by performing the
averaging over all pairs and over the dipolar orientation:

χ(ω) = 1

3V

∑
pairs

α(ω). (78)

When assuming both signs ofJ to occur with equal probability, the terms proportional to
sign(J ) in equation (38) cancel. Noting thatw2

+ = 1/(1+x2), w2
− = x/(1+x2) and putting

p = qd/2, we find for the zero-frequency susceptibility

χ(ω → 0) = χiso

∫ x2

x1

dx
µ

(1 − x2)2

{
tanh

(
x10

2kBT

)
1

x
+ tanh

(
10

2xkBT

)
x3

}
(79)

where we have used the expression for non-interacting (or isolated) tunnelling impurities

χiso(ω → 0) = 2

3

np2

ε010
. (80)

As for the specific heat, the expression in (79) cannot be integrated analytically; in figure 3
we show its temperature dependence, together withχiso(ω → 0).
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The zero-temperature susceptibility arising from the pair model exceeds that expected
for isolated impurities, and it weakly increases with decreasing temperature even at low
temperature, whereχiso is constant. According to figure 3 both features are confirmed by
the data for KCl:CN (cf. [11]), thus proving the significance of the low-energy excitations
η−. (Note, however, that the uncertainty in density of about 10 per cent would permit us
to adjust the zero-temperature susceptibility to the value ofχiso.) Our result does not agree
with that of reference [24].

Finally we consider the zero-temperature limit of the low-frequency susceptibility;
putting T = 0 and assumingµ � 1, the integral (79) yields [17]

χ(ω = 0) = χiso
[
1 + µ(log(J2/10) − 1/2)

]
for µ � 1 andT → 0. (81)

Hence the pair-model susceptibility exceeds that of isolated impurities by a factor [1+
µ(log(J2/10) − 1)]; this effect may be traced back to the growing spectral weight of
low-energy excitationsη−.

Note, however, that at higher concentration, i.e. forµ approaching unity, the pair model
breaks down, and interaction with more than one neighbour leads to stronglydecreasing
low-frequency susceptibility [14, 17, 20–23].

8.3. The Rabi frequency

Recently rotary echoes of lithium impurities in KCl have been investigated in great detail
[10, 30]. The Rabi frequency of two nearby defect ions with effective tunnel energy
η− = 101

′
0/J and asymmetry1 in an external fieldF0 cos(Et/h̄) is given by

� = 1

h̄

η−
E

P · F0 (82)

where E =
√

η2− + 412. The availability of two stable isotopes6Li and 7Li permits a
thorough investigation of the mass dependence of�. Studying all combinations of defect
pairs, Weiset al have confirmed the isotope effect arising fromη− = 101

′
0/J , with 10

and1′
0 being given by either710 = 1.1 K or 610 = 1.7 K [10, 30].

Our result, equation (59), ensures that a strongly coupled pair of impurities with finite
asymmetry1 is well described by an effective two-state system with tunnelling energy
η− and asymmetry 21, thus permitting us to use the well known theory of rotary echoes
of two-level systems. Treating the actual problem of two interacting eight-state systems
yielded results essentially identical to our equation (59) [30, 17].

8.4. Relaxation

As a most significant consequence, a finite asymmetry energy gives rise to a relaxational
feature in the correlation spectrum (61) with amplitude 412/E2; the rateγl arises from
coupling to acoustic lattice vibrations.

When investigating the relaxation spectrum of interacting lithium defects, Enss and
Weis [29] found a surprising isotope effect for the relaxation rate. Taking into account the
coupling of allN defects on the lattice, a relaxation feature of spin-diffusion type was shown
to emerge, with a rate proportional to1−4

0 . Considering equation (63) andη− = 12
0/J , we

find the rate derived in the present paper to vary with14
0. Thus spin–spin relaxation and

spin–lattice relaxation show an opposite isotope effect; this clear signature should permit
us to determine the dominant relaxation mechanism of coupled substitutional defects.
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9. Summary

In this paper we have extended our previous work on the pair model for substitutional
defects [15] by taking into account both a finite asymmetry energy and phonon coupling.
Here we summarize the main results.

(i) At sufficiently low density corresponding toµ 6 1
10, the pair model provides a

satisfying description of the interaction effects on specific heat and dynamical susceptibility,
as shown in figures 2 and 3.

(ii) The low-energy states of a pair of coupled impurities reduce to an effective two-level
system, as is obvious from equation (59), with an effective tunnel energyη− and a bias
given by twice that of a single impurity. These results are confirmed by the perturbative
treatment of two coupled eight-state systems [30, 17]. The calculated density of states
accounts well for specific heat data.

(iii) For µ � 1 the interaction results in an excess susceptibility as compared to that
for isolated impurities; low-frequency data on KCl:CN would seem to confirm this effect.

(iv) According to the known results for a two-state system, we find a relaxation feature
whose rate varies with the fourth power of the tunnelling energy10.

Appendix A. Unitary transformation

In the basis (23), the transformation diagonalizing the symmetric defect pair is given by

U =


U11 U11 0 0
U11 −U11 0 0
0 0 U33 U34

0 0 U43 U44

 (A1)

with entries

U11 = 1

2
√

2


−w− iw− w+ iw+
−iw+ w+ iw− w−
w+ −iw+ w− iw−
iw− −w− iw+ w+

 (A2)

U33 =


1/2 1/2 1/2 1/2
1/2 1/2 −1/2 −1/2
−ia1 ia1 −i/2 i/2
ia1 −ia1 i/2 −i/2

 (A3)

U34 =


0 0 0 0
0 0 0 0

−a2 a2 0 0
−a2 a2 0 0

 (A4)

U43 =


ia2 −ia2 0 0

−ia2 ia2 0 0
0 0 0 0
0 0 0 0

 (A5)

U44 =


a1 −a1 1/2 −1/2
a1 −a1 1/2 −1/2

1/2 1/2 −1/2 −1/2
1/2 1/2 1/2 1/2

 (A6)



7320 O Terzidis and A W¨urger

where we have used the shorthand notation

a1 = 1

2
(w2

− − w2
+) a2 = w− w+. (A7)
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